Abstract

Zr55Al10Cu30Ni5 bulk metallic glass was rolled up to 95% in thickness reduction at room temperature, and the dependences of microstructure and thermal stability on the strain were investigated. It is revealed that phase transformations do not occur during the rolling, but the split of the crystallization peaks becomes more and more obvious with increasing thickness reduction. Analyses of the radial distribution functions and the pair correlation functions indicate that the rolling has enhanced the short-range order, which should be responsible for the enlarging split of the crystallization peaks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.