Abstract

Several series of polyamide-6 (PA-6) nanocomposites, differing in montmorillonite (MMT) type and content and PA-6 matrix molecular weight, were prepared by melt-extrusion and the associated PA-6 crystallization behavior and morphology was evaluated using (synchrotron) X-ray diffraction, transmission electron microscopy and differential scanning calorimetry. The nucleating ability of silicate layers is poor in PA-6 nanocomposites made by melt-extrusion because highly active, stable PA-6 crystallization precursors are generated during melt-extrusion. In most of the studied PA-6/MMT nanocomposites the dispersed silicate layers act as impurities and decrease rather than increase the overall crystallization kinetics of PA-6, especially at high MMT contents. Furthermore, at a given MMT concentration, the crystal growth retardation inflates with increasing degree of exfoliation, which dependents on the MMT type and which increases with increasing PA-6 molecular weight. One of the considered MMT types leads to a poorly exfoliated nanomorphology and as a result no retardation of crystal growth is observed. Furthermore, the disturbed crystal growth does not alter the PA-6 semicrystalline stack morphology. Moderate nucleation effects due to the presence of MMT can be observed when the particle load is low (low amount of MMT and/or poor degree of exfoliation) and provided the supercooling is sufficiently large.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.