Abstract

Mg60Ni23.6La16.4 amorphous ribbon was prepared by melting-spinning method and the crystallization behavior was investigated by differential scanning calorimetry (DSC). The Mg60Ni23.6La16.4 crystallization process exhibits two stages of crystallization and shows an obviously kinetic nature. Isothermal DSC curves indicate that the crystallization is a nucleation-and-growth procedure. The activation energy analysis based on Kissinger Method shows that the growth process for the first crystallization procedure is more difficult than that for the second one. Calculation based on the Johnson-Mehl-Avrami (JMA) model shows that the primary crystallization starts from small crystalline grains with an increasing nucleation rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call