Abstract

The effects of the filler content and the filler size on the crystallization and melting behavior of glass bead-filled low-density polyethylene (LDPE) composites have been studied by means of a differential scanning calorimeter (DSC). It is found that the values of melting enthalpy (ΔHc) and degree of crystallinity (xc) of the composites increase nonlinearly with increasing the volume fraction of glass beads, ϕf, when ϕf is greater than 5%; the crystallization temperatures (Tc) and the melting temperatures (Tm) of the composites are slightly higher than those of the pure LDPE; the effects of glass bead size on xc, Tc, and Tm are insignificant at lower filler content; but the xc for the LDPE filled with smaller glass beads is obviously greater than that of the filled system with bigger ones at higher ϕf. It suggests that small particles are more beneficial to increase in crystallinity of the composites than big ones, especially at higher filler content. In addition, the influence of the filler surface pretreated with a silane coupling agent on the crystallization behavior are not too outstanding at lower inclusion concentration. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 687–692, 1999

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call