Abstract

AbstractThe effect of clay and chain extender on the nonisothermal, isothermal crystallization kinetics, and morphology of polylactide (PLA) was investigated in this study. PLA and PLA‐based nanocomposites containing 2 wt% organoclay were prepared via melt compounding. Three commercially available chain extenders were used: polycarbodiimide (PCDI), tris(nonylphenyl) phosphite (TNPP), and Joncryl ADR4368F. The nanoclay particles were found to act as nucleating agents. Chain extender incorporation, however, had diverse effects on both crystallization rate and degree of crystallinity. Nonisothermal DSC results revealed that the addition of PCDI increased the cold‐crystallization temperature (Tc) from 106 to 114°C, reduced the degree of crystallinity from 6.3 to 5.3%, and resulted in the formation of bimodal melting peaks in PLA. On the other hand, the reduction of chain ends in the presence of TNPP resulted in a significant increase of the crystallization rate and degree of crystallinity from 6.3 to 15.2%. In the case of Joncryl, its incorporation led to the formation of a long‐chain branching structure, which disrupted the chain packing. Therefore, the degree of crystallinity (from 6.3 to 1.6%) and the rate of crystallization decreased, while Tc was increased from 106 to 122°C in the presence of Joncryl. POLYM. ENG. SCI., 2013. © Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.