Abstract

The crystal structure and morphology of poly(ether ether ketone) (PEEK) was investigated using standard differential scanning calorimetry (DSC), flash DSC, optical microscopy, atomic force microscopy, and small angle X-ray scattering tools. The flash DSC results suggested that the double melting peaks phenomenon observed in conventional DSC work originated from the reorganization of PEEK crystals, which was due to the much faster recrystallization rate of PEEK than the DSC heating and cooling rate. A refined crystallization model to describe PEEK crystal structure formation was proposed. The refined crystallization model could help reconcile the discrepancy found between the bulk crystallinity measured by DSC and the linear crystallinity obtained from SAXS experiments by taking into account possible variation in crystal perfection within the lamellar structure. Simplified molecular dynamic modeling was carried out to support this model. Implications of the above findings to the fundamental understanding of structure–property relationships in PEEK were discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.