Abstract

Fe75Co6Zr9B10 amorphous alloy prepared by melt-spinning was annealed at various temperatures. The crystallization behavior and microstructure were investigated by differential thermal analysis (DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The three exothermal peaks in the DTA curve of Fe75Co6Zr9B10 amorphous alloy correspond to the formations of α-Fe and α-Mn type phases, the growth of BCC-Fe volume fraction at the expense of α-Mn and residual amorphous phase and the precipitations of Fe3Zr, etc. intermetallic compounds, respectively. The second exothermic peak is not influenced by heating rate, but it shifts to a higher temperature region with increasing preannealing temperature of Fe75Co6Zr9B10 alloy. The α-Mn type phase is metastable and its lattice parameter determined by TEM is 0.8830nm. AFM images show the development of surface morphology of alloy after annealing. The particle size increases with increasing annealing temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.