Abstract
AbstractIn this article, we discuss the crystallization behavior and crystallization kinetics of isotactic polypropylene (iPP) modified by long‐chain‐branching (LCB) high‐melt‐strength iPP over a wide composition range, that is, LCB‐iPP from 10 to 50 wt %. Over the entire range we investigated, the presence of LCB‐iPP accelerated crystallization in both the isothermal crystallization process and nonisothermal crystallization process, even when the LCB‐iPP content was as low as 10%, and both crystallization processes were enhanced more significantly as the LCB‐iPP content increased. Hoffman–Lauritzen theory analysis revealed that the fold‐free energy decreased effectively with the occurrence of the LCB structure, although the growth rate of spherulites was depressed, as shown by polarized optical microscopy. Meanwhile, the regime III–regime II transition temperature was about 15° higher for all of the LCB‐iPP compositions than that of iPP because the LCB structure reduced the mobility of the polypropylene chains. Furthermore, the γ‐form crystal structure was favored by LCB compared to the β form, which was supported by wide‐angle X‐ray diffraction. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.