Abstract
Disaccharide phosphorylases are attractive enzymatic platforms for tailor-made sugar synthesis owing to their ability to catalyze both the synthesis and the breakdown of disaccharides. Trehalose phosphorylase from Thermoanaerobacter sp. (TP) is a glycoside hydrolase family 65 enzyme which catalyzes the reversible breakdown of trehalose [D-glucopyranosyl-alpha(1,1)alpha-D-glucopyranose] to beta-D-glucose 1-phosphate and D-glucose. Recombinant purified protein was produced in Escherichia coli and crystallized in space group P2(1)2(1)2(1). Crystals of recombinant TP were obtained in their native form and were soaked with glucose, with n-octyl-beta-D-glucoside and with trehalose. The crystals presented a number of challenges including an unusually large unit cell, with a c axis measuring 420 A, and variable diffraction quality. Crystal-dehydration protocols led to improvements in diffraction quality that were often dramatic, typically from 7-8 to 3-4 A resolution. The structure of recombinant TP was determined by molecular replacement to 2.8 A resolution, thus establishing a starting point for investigating the structural and mechanistic determinants of the disaccharide phosphorylase activity. To the best of our knowledge, this is the first crystal structure determination of an inverting trehalose phosphorylase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Crystallographica Section F Structural Biology and Crystallization Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.