Abstract

The ataRT operon from enteropathogenic Escherichia coli encodes a toxin-antitoxin (TA) module with a recently discovered novel toxin activity. This new type II TA module targets translation initiation for cell-growth arrest. Virtually nothing is known regarding the molecular mechanisms of neutralization, toxin catalytic action or translation autoregulation. Here, the production, biochemical analysis and crystallization of the intrinsically disordered antitoxin AtaR, the toxin AtaT, the AtaR-AtaT complex and the complex of AtaR-AtaT with a double-stranded DNA fragment of the operator region of the promoter are reported. Because they contain large regions that are intrinsically disordered, TA antitoxins are notoriously difficult to crystallize. AtaR forms a homodimer in solution and crystallizes in space group P6122, with unit-cell parameters a=b=56.3, c = 160.8 Å. The crystals are likely to contain an AtaR monomer in the asymmetric unit and diffracted to 3.8 Å resolution. The Y144F catalytic mutant of AtaT (AtaTY144F) bound to the cofactor acetyl coenzyme A (AcCoA) and the C-terminal neutralization domain of AtaR (AtaR44-86) were also crystallized. The crystals of the AtaTY144F-AcCoA complex diffracted to 2.5 Å resolution and the crystals of AtaR44-86 diffracted to 2.2 Å resolution. Analysis of these structures should reveal the full scope of the neutralization of the toxin AtaT by AtaR. The crystals belonged to space groups P6522 and P3121, with unit-cell parameters a = b = 58.1, c = 216.7 Å and a = b = 87.6, c=125.5 Å, respectively. The AtaR-AtaT-DNA complex contains a 22 bp DNA duplex that was optimized to obtain high-resolution data based on the sequence of two inverted repeats detected in the operator region. It crystallizes in space group C2221, with unit-cell parameters a = 75.6, b = 87.9, c = 190.5 Å. These crystals diffracted to 3.5 Å resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.