Abstract
Asymmetric stem-cell divisions are fundamental for morphogenesis and tissue homeostasis. They rely on the coordination between cortical polarity and the orientation of the mitotic spindle, which is orchestrated by microtubule pulling motors recruited at the cortex by NuMA-LGN-Gαi complexes. LGN has emerged as a central component of the spindle-orientation pathway that is conserved throughout species. Its domain structure consists of an N-terminal TPR domain associating with NuMA, followed by four GoLoco motifs binding to Gαi subunits. The LGN(TPR) region is also involved in interactions with other membrane-associated proteins ensuring the correct cortical localization of microtubule motors, among which is the junctional protein afadin. To investigate the architecture of LGN(TPR) in complex with afadin, a chimeric fusion protein with a native linker derived from the region of afadin upstream of the LGN-binding domain was generated. The fusion protein behaves as a globular monomer in solution and readily crystallizes in the presence of sulfate-containing reservoirs. The crystals diffracted to 3.0 Å resolution and belonged to the cubic space group P213, with unit-cell parameter a = 170.3 Å. The structure of the engineered protein revealed that the crystal packing is promoted by the coordination of sulfate ions by residues of the afadin linker region and LGN(TPR).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta crystallographica. Section F, Structural biology communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.