Abstract

If the entropy extrapolation of supercooled liquids (SCL) suggested by Kauzmann was correct, then they would have the same entropy as their stable crystalline phase at a certain low temperature, below the laboratory glass transition (Tg), known as the Kauzmann temperature (TK). Extrapolating even further, the liquid entropy would be null at a temperature above absolute zero, violating the Third Law of Thermodynamics and constituting a paradox. Several possibilities have been proposed over the past 70 years to solve this paradox with different degrees of success. Our objective here is to access liquid dynamics at deep supercoolings to test the so-called crystallization solution to the paradox. By comparing the relaxation and crystallization kinetics determined above Tg and extrapolated down to TK, a possible solution would be that the crystallization time is shorter than the relaxation time, which would mean that a SCL cannot reach the TK. In this case, the liquid stability limit or kinetic spinodal temperature (Tks) should be higher than TK. We tested two fragile glass-forming liquids (diopside and wollastonite) and two strong liquids (silica and germania). For the fragile substances, Tks ≫ TK, hence such a supercooled liquid cannot exist at TK, and the entropy crisis is averted. On the other hand, the results for the strong liquids were inconclusive. We hope the findings of this work encourage researchers to further investigate the liquid dynamics of different strong glass-forming systems at deep supercoolings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call