Abstract

Ribonucleotide reduction, the unique step in DNA-precursor biosynthesis, involves radical-dependent redox chemistry and diverse metallo-cofactors. The metallo-cofactor (R2F) encoded by the nrdF (nucleotide reduction) gene in Corynebacterium ammoniagenes ATCC 6872 was isolated after homologous expression and a new crystal form of ribonucleotide reductase R2F was obtained. R2F was crystallized at 277 K using the vapour-diffusion method with PEG as the precipitating agent. A data set was collected to 1.36 A resolution from a single crystal at 100 K using synchrotron radiation. The crystal belonged to space group C2, with unit-cell parameters a = 96.21, b = 87.68, c = 83.25 A, beta = 99.29 degrees. The crystal contained two molecules per asymmetric unit, with a Matthews coefficient (V(M)) of 2.69 A(3) Da(-1); the solvent content was estimated to be 54.3%. X-ray fluorescence spectroscopy and MAD diffraction data indicated the presence of manganese in the molecule and the absence of iron.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.