Abstract
Guanylate kinase-associated protein (GKAP) is a scaffolding protein that plays a role in protein-protein interactions at the synaptic junction such as linking the NMDA receptor-PSD-95 complex to the Shank-Homer complex. In this study, the C-terminal helical domain of GKAP from Rattus norvegicus was purified and crystallized by the vapour-diffusion method. To improve the diffraction quality of the GKAP crystals, a flexible loop in GKAP was truncated and an MBP (maltose-binding protein)-GKAP fusion was constructed in which the last C-terminal helix of MBP is fused to the N-terminus of the GKAP domain. The MBP-GKAP crystals diffracted to 2.0 Å resolution using synchrotron radiation. The crystal was orthorhombic, belonging to space group P2₁2₁2, with unit-cell parameters a=99.1, b=158.7, c=65.5 Å. The Matthews coefficient was determined to be 2.44 Å3 Da(-1) (solvent content 49.5%) with two molecules in the asymmetric unit. Initial attempts to solve the structure by molecular replacement using the MBP structure were successful.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta crystallographica. Section F, Structural biology communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.