Abstract
This paper deals with structural and morphological developments during flow-induced crystallization of molten isotactic polypropylene (iPP). Several authors have invoked the formation of precursors in the early stages of this process. However, it is not clear whether these precursors can be generated and can crystallize already during flow. We address this issue using X-ray scattering (SAXS and WAXD) with a high image capturing rate during and immediately after a strong shear pulse to the undercooled melt. Eventually, we provide the first in situ evidence of formation of flow-induced precursors (FIPs) of crystallization generated applying shear to a fast crystallizing melt of flexible macromolecules, like iPP. Moreover, it is shown that a rheological classification can be used to define the flow conditions promoting FIPs formation. In fact, when molecular stretch is achieved, we found that shear rate is the parameter dominating the formation of structures during shear. When the shear rate is high enough, ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.