Abstract
Abstract Effects of isothermal annealing on structural relaxation, crystallization and mechanical behavior of Zr-40 at.% Cu thin film metallic glass (TFMG) are reported. Two annealing temperatures have been chosen in the supercooled liquid region (ΔT) and one below the glass transition temperature (Tg). During annealing the free volume decreased and nanocrystals nucleated into the matrix. Results show that the nanocrystalline CuZr2 intermetallic phase precipitates in the glassy matrix with respect to the annealing temperature and duration. When annealed below Tg, the structural relaxation induces a slight improvement of the mechanical properties with a hardness and Young's modulus variation of about 2.5% and 9.0% compared with the as-deposited values. At higher temperatures, it is shown that hardness increases of about 5.5% and 25.0% after a heat treatment of 60 min at 350 °C and 380 °C, respectively. The elastic modulus follows a time dependent increase from ~ 100 GPa (as-deposited) up to ~ 105 GPa after a one-hour annealing at 350 °C and ~ 125 GPa at 380 °C, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.