Abstract

AbstractThe introductory part reviews the impact of thin film fabrication, precipitation versus vacuum‐based methods, on the initial defect state of the material and microstructure evolution to amorphous, biphasic amorphous‐nanocrystalline, and fully nanocrystalline metal oxides. In this study, general rules for the kinetics of nucleation, crystallization, and grain growth of a pure single‐phase metal oxide thin film made by a precipitation‐based technique from a precursor with one single organic solvent are discussed. For this a complete case study on the isothermal and non‐isothermal microstructure evolution of dense amorphous ceria thin films fabricated by spray pyrolysis is conducted. A general model is established and comparison of these thin film microstructure evolution to kinetics of classical glass‐ceramics or metallic glasses is presented. Knowledge on thermal microstructure evolution of originally amorphous precipitation‐based metal oxide thin films allows for their introduction and distinctive microstructure engineering in devices‐based on microelectromechanical (MEMS) technology such as solar cells, capacitors, sensors, micro‐solid oxide fuel cells, or oxygen separation membranes on Si‐chips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.