Abstract

Phase change random access memory (PCRAM) requires an advanced phase change material to lower its power consumption and to enhance its data retention and endurance abilities. The present work investigated the crystallization behaviors and electrical properties of Ge1Cu2Te3 compound films with a low melting point of about 500°C for PCRAM application. Sputter-deposited Ge1Cu2Te3 amorphous films showed a high crystallization temperature of about 250°C. The Ge1Cu2Te3 amorphous film showed an electrical resistance decrease of over 102-fold and exhibited a small increase in thickness of 2.0% upon crystallization. The Ge1Cu2Te3 memory devices showed reversible switching behaviors and exhibited a 10% lower power consumption for the reset operation than the conventional Ge2Sb2Te5 memory devices. Therefore, the Ge1Cu2Te3 compound is a promising phase change material for PCRAM application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.