Abstract

The research made in the present PhD Thesis entitled “Crystallization and dissolution study of electrolyte salts”. The objective of the dissertation concerned both crystallization and dissolution processes of soluble sodium sulfate and insoluble calcium carbonate electrolyte salts approached by different experimental aspects but directly connected to environmental and scientific issues. Salt crystallization is an important cause for the weathering and damage of historical and cultural heritage artifacts and ornamental stones. Soluble salts (i.e. sodium sulfate, magnesium sulfate, sodium chloride) have also a damaging and fateful impact on civil engineering structures of roads and building foundations. Most damaging salt for such built frameworks is proven to be sodium sulfate salt. Only when we have a better understanding of sodium sulfate crystallization in an unconstrained fluid medium can we progress to a study of sodium sulfate crystallization in porous building materials. At the beginning of this study batch crystallization experiments of sodium sulfate salt were conducted. Additionally potential organic inhibitors (i.e. organophosphonate, polyacrylates) were tested in the same batch experimental system. Popular and applicable limestone building material is of uniform composition consisting mainly calcium (calcitic material). Granada’s calcarenite has been selected as one of the target material to study. This natural stone is representative of the building material utilized in construction material monuments and susceptible to salt crystallization. In situ AFM experiments of both calcite crystal growth and dissolution were performed in the presence of different electrolyte solutions (i.e. sodium sulfate and sodium fluoride). Nanoscale phenomena during the growth of solid solutions on calcite surfaces were performed in the presence of sodium sulfate electrolyte solutions. Further molecular-scale surface processes during both growth and dissolution of calcite in the presence of sodium fluoride electrolyte solutions were carried out. In all cases significant kinetic data and reaction mechanisms were extracted. Accelerated degradation of Granada’s limestone and Czech sandstone experiments were executed. Tested materials were exposed and impregnated in concentrated solutions of soluble salts (i.e. sodium sulfate, magnesium sulfate and sodium chloride). Immersed limestone type material showed susceptibility to sodium sulfate and sandstone type material to sodium chloride salt solution. Different pre-treatments of limestone specimens with organophosphonate compounds resulted in limiting material damage from sodium sulfate influence. The use of such organic compounds may direct towards a potential implication of conserving building frameworks. Finally suspended limestone rods were subjected to sodium sulfate spray chamber. Pre-treatment of limestone rods with organophosphonate compounds were completed. Again applications of organophosphonate compounds to exposure of limestone material in salt spray chamber may work towards a case of preventing porous material from salt damage and protect building stones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call