Abstract

The Zr50.7Ni28Cu9Al12.3 amorphous alloy and its crystallization counterparts have been prepared using a melt spinning technique and proper annealing treatment. The as-annealed products at 768 K are amorphous composites consisting of a main amorphous phase and a few ZrO2 nanocrystals. The corrosion behaviors have been investigated in 0.5-M NaCl, 1-M HCl, and 0.5-M H2SO4 solutions. The results show that amorphous composites present the enhanced corrosion resistance in Cl− containing solutions due to the formation of compact passive films, which are promoted by an appropriate quantity of ZrO2 nanocrystals. Nevertheless, the relaxed samples possess good corrosion resistance in H2SO4 solution, which is attributed to the existence of Zr(Al, Ni)-rich protective film induced by the depletion of Cu. In addition, corrosion resistance of the tested alloys is relatively superior in H2SO4 solution, especially for pitting corrosion resistance, and inferior in HCl solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.