Abstract

We present the results of crystallization and amorphization studies on a thin-film sample of Ge(2)Sb(2.3)Te(5), encapsulated in a quadrilayer stack as in the media of phase-change optical disk data storage. The study was conducted on a two-laser static tester in which one laser, operating in pulsed mode, writes either amorphous marks on a crystalline film or crystalline marks on an amorphous film. The second laser, operating at low power in the cw mode, simultaneously monitors the progress of mark formation in terms of the variations of reflectivity both during the write pulse and in the subsequent cooling period. In addition to investigating some of the expected features associated with crystallization and amorphization, we noted certain curious phenomena during the mark-formation process. For example, at low-power pulsed illumination, which is insufficient to trigger the phase transition, there is a slight change in the reflectivity of the sample. This is believed to be caused by a reversible change in the complex refractive index of the Ge(2)Sb(2.3)Te(5) film in the course of heating above the ambient temperature. We also observed that the mark-formation process may continue for as long as 1 mus beyond the end of the write laser pulse. This effect is especially pronounced during amorphous mark formation under high-power, long-pulse illumination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.