Abstract

Trisilanolisobutyl polyhedral oligomeric silsesquioxane (TSI-POSS) with three hydroxyl functional groups pendent to a semi-enclosed cage, was incorporated in concentrations of 7, 13 and 22 wt% into 4,4'-methylenebis (phenyl isocyanate) (MDI) and glycerol propoxylate to prepare TSI-POSS/PU hybrid composites as a heavy linking node in backbone, respectively. The domain micro-structures of these composites were investigated by FTIR, wide angle X-ray scattering (WAXS) and molecular dynamics simulation approach. The results indicate that with TSI-POSS concentration increasing in hybrid composites, distinct crystallite clusters are formed which increase the volume of hard segments and lead to the micro-phase separation. Meanwhile, details of chain packing has been evaluated by radial distribution function, which shows that below 13wt% TSI-POSS concentration, the number of contacts between neighboring chains is decreased due to the humping semi-enclosed cage of TSI-POSS units. However, when TSI-POSS concentration is up to 22 wt%, the number of contacts is increased because the formation of crystallite cluster pulls neighboring chains closer to each other and significantly shortens their distance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call