Abstract
Microcrystals of the chlorophyll binding protein, CP43, isolated from spinach thylakoid membranes have been studied by electron microscopy both in negative stain and in vitreous ice. Image analyses of three characteristic views show that the crystals are built of five different layers perpendicular to the c-axis. Each layer consists of different orientations of the CP43 protein. The unit cell derived from the end-on view (looking down the c-axis) shows an angle of 120°, suggesting a threefold rotational symmetry. Both negative staining and cryo data are consistent with a hexagonal crystal lattice. Interpretation of the arrangement of the CP43 protein within this crystal lattice can be made based on 8- and 9-Å electron crystallographic structures previously published that provide a model for the organisation of the transmembrane helices of CP43. Overall the analysis presented is consistent with X-ray diffraction data obtained from larger CP43 crystals and forms a framework on which to base further structural studies of this chlorophyll binding protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.