Abstract

Introducing layered quasi-2D perovskite phases into a conventional 3D perovskite light-absorbing matrix is a promising strategy for overcoming the limited environmental stability of 3D perovskite solar cells. Here, we present a simple drop-casting method for preparing hybrid perovskite films comprising both quasi-2D and quasi-3D phases, formed using phenylethylammonium or iso-butylammonium as spacer cations. The film morphology, phase purity, and crystal orientation of the hybrid quasi-2D/3D perovskite films are improved significantly by applying a simple N2 blow-drying step, together with inclusion of methylammonium chloride as an additive. An enhanced power conversion efficiency of 16.0% is achieved using an iso-butylammonium-based quasi-2D/3D perovskite layer which, to our knowledge, is the highest recorded to date for a quasi-2D/3D perovskite solar cells containing a non-spin-cast perovskite layer prepared under ambient laboratory conditions.

Highlights

  • Introducing layered quasi-2D perovskite phases into a conventional 3D perovskite lightabsorbing matrix is a promising strategy for overcoming the limited environmental stability of 3D perovskite solar cells

  • Quasi-two-dimensional (2D) Ruddlesden–Popper perovskites, R2An−1MnX3n+1 (n ≥ 1), where R and A represent larger and smaller organic cations, respectively, M refers to transition metal cation (e.g. Pb+ or Sn+) and X is a halide anion, are attracting increased attention for use in solar cells due to their higher operational stability compared with 3D perovskites[11,12,13,14,15]

  • The morphology of the films was studied in greater detail using scanning electron microscopy (SEM) (Fig. 2e–f), with the naturally dried PEA-2D film (Fig. 2e) appearing rough and comprising some cylinder-like grains

Read more

Summary

Introduction

Introducing layered quasi-2D perovskite phases into a conventional 3D perovskite lightabsorbing matrix is a promising strategy for overcoming the limited environmental stability of 3D perovskite solar cells. Tsai et al developed a hot-casting spin-coating method for the preparation of films comprising highly oriented quasi-2D perovskites (n-BA2MAn−1PbnI3n+1), resulting in an improvement in PCE to 12.52%13. The effect of the drying conditions and the presence of MACl additive on film morphology, phase purity and crystal orientation using the quasi-2D perovskite precursor solutions based on PEA or iso-BA spacer cations is investigated, and the photovoltaic performance of devices incorporating the drop-cast films is evaluated.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.