Abstract

Apatite compounds with different levels of crystallinity were prepared using Ca-EDTA complexes. Ca-deficient hydroxyapatite (CDHA) with low crystallinity was synthesized by ultrasonic stirring of a mixture of Ca-EDTA complex, phosphoric acid, and ammonium hydroxide in hydrogen peroxide aqueous solution. Mixtures of carbonate hydroxyapatite (HA) and CDHA with higher crystallinity were also prepared from a solution involving the same complex. The porous composites with lower or higher crystallinity apatite with a copolymer of poly(L-lactide-co-glycilide)(70/30) (PLGA(70/30)) were fabricated by a solution-casting/particles leaching method. The apatites and porous composites were characterized, and it was found that the degradation of composites of apatite with a low level of crystallinity was fastest in phosphate-bufferd saline (PBS) solution compared with other apatite composites with higher levels of crystallinity; however, the rate was smaller than that of PLGA alone. Plasma treatment influenced the degradation of composites in PBS and apatite precipitation in simulated body fluid (SBF). Hydroxyapatite deposition on the PLGA composite with the low crystallinity occurred six times faster than that on PLGA alone after immersion in SBF. The incorporation of apatite into the PLGA matrix did not cause any adverse effects on cell attachment in an assay employing human gingival fibroblasts. This study suggested that the current apatite and PLGA porous composite will be a promising scaffold material for tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call