Abstract

One-electron reduction of diboratriazole 1 with potassium graphite (KC8) generates the radical anion 1•-•K+, which undergoes a salt (KCl) elimination reaction upon addition of an N-heterocyclic carbene (NHC) to afford the neutral diboratriazole radical 3. An X-ray diffraction analysis, electron paramagnetic resonance spectroscopy, and computational studies revealed that an unpaired electron in radical species 1•-•K+ and 3 is delocalized over the π-system of the B2N3 and carbene rings. Reversible oxidation of 3 gives rise to a diboratriazole cation 4 featuring a 6π aromatic character. Moreover, treating 1•-•K+ with a half equivalent of a bis(NHC) produces a biradical species 5, in which there is little interaction between two radical moieties separated by the bis(NHC) linker, suggesting the dis-biradical property. 5 undergoes stepwise and reversible two-electron oxidation, establishing three formal oxidation states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.