Abstract

We numerically investigate crystalline order on negative Gaussian curvature capillary bridges. In agreement with the experimental results in [W. Irvine et al., Nature, Pleats in crystals on curved surfaces, 2010, 468, 947] we observe for decreasing integrated Gaussian curvature, a sequence of transitions, from no defects to isolated dislocations, pleats, scars and isolated sevenfold disclinations. We especially focus on the dependency of topological charge on the integrated Gaussian curvature, for which we observe, again in agreement with the experimental results, no net disclination for an integrated curvature down to -10, and an approximately linear behavior from there on until the disclinations match the integrated curvature of -12. In contrast to previous studies in which ground states for each geometry are searched for, we here show that the experimental results, which are likely to be in a metastable state, can be best resembled by mimicking the experimental settings and continuously changing the geometry. The obtained configurations are only low energy local minima. The results are computed using a phase field crystal approach on catenoid-like surfaces and are highly sensitive to the initialization.

Highlights

  • We numerically investigate crystalline order on negative Gaussian curvature capillary bridges

  • Nature, Pleats in crystals on curved surfaces, 2010, 468, 947] we observe for decreasing integrated Gaussian curvature, a sequence of transitions, from no defects to isolated dislocations, pleats, scars and isolated sevenfold disclinations

  • We especially focus on the dependency of topological charge on the integrated Gaussian curvature, for which we observe, again in agreement with the experimental results, no net disclination for an integrated curvature down to À10, and an approximately linear behavior from there on until the disclinations match the integrated curvature of À12

Read more

Summary

Introduction

We numerically investigate crystalline order on negative Gaussian curvature capillary bridges. Nature, Pleats in crystals on curved surfaces, 2010, 468, 947] we observe for decreasing integrated Gaussian curvature, a sequence of transitions, from no defects to isolated dislocations, pleats, scars and isolated sevenfold disclinations.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.