Abstract
It is generally assumed that vitrification of both cells and the surrounding medium provides the best preservation of ultrastructure of biological material for study by electron microscopy. At the same time it is known that the cell cytoplasm may provide substantial cryoprotection for internal cell structure even when the medium crystallizes. Thus, vitrification of the medium is not essential for good structural preservation. By contrast, a high cooling rate is an essential factor for good cryopreservation because it limits phase separation and movement of cellular components during freezing, thus preserving the native-like state. Here we present calculations of freezing rates that incorporate the effect of medium crystallization, using finite difference methods. We demonstrate that crystallization of the medium in capillary tubes may increase the cooling rate of suspended cells by a factor of 25-300 depending on the distance from the centre. We conclude that crystallization of the medium, for example due to low cryoprotectant content, may actually improve cryopreservation of some samples in a near native state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.