Abstract

Using grazing-incidence small-angle X-ray scattering in a special configuration (parallel SAXS, or parSAXS), we mapped the crystallization of DNA-capped nanoparticles across a sessile droplet, revealing the formation of crystalline Gibbs monolayers of DNA-capped nanoparticles at the air-liquid interface. We showed that the spatial crystallization can be regulated by adjusting both ionic strength and DNA sequence length and that a modified form of the Daoud-Cotton model could describe and predict the resulting changes in interparticle spacing. Gibbs monolayers at the air-liquid interface provide an ideal platform for the formation and study of equilibrium nanostructures and may afford exciting routes toward the design of programmable 2D plasmonic materials and metamaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.