Abstract
Improving the electrical conductivity is an important role in realizing high thermoelectric performance of solution-processable polymers. Herein, a simple and robust approach to boost the mobility and doping efficiency of a diketopyrrolopyrrole-based copolymer with the introduction of thermocleavable side chains (PDPPS-X, where X is the molar ratio of the thermocleavable side chains and alkyl chains) is first provided. Notably, the incorporated thermocleavable groups can be effectively removed after thermal treatment and therefore contribute to the crystalline domain formation via hydrogen-bonded networks, which is critical for conductivity enhancements. Grazing incidence wide-angle X-ray scattering (GIWAXS) patterns give a clear indication that the thermal treatment of PDPPS-5 can greatly improve the structural arrangement, resulting in a significantly enhanced hole mobility (5.4 times that of PDPPS-0 without thermocleavable chains). Compared to PDPPS-0, a larger Fermi level shift is observed after doping PDPPS-5 with FeCl3, reflecting a better doping efficiency. Consequently, remarkably improved conductivity and power factor are achieved by PDPPS-5 after doping with 0.03 M FeCl3 at room temperature, which are about 2.2 and 3.5 times higher than that of PDPPS-0 at the same testing condition, respectively. Moreover, PDPPS-5 achieved a maximum power factor of 57.5 μW m-1 K-2 at 404 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.