Abstract
Alkaline water electrolysis is apreferred technology for large-scale green hydrogen production. For most active transition metal-based catalysts during anodic oxygen evolution reaction (OER), the atomic structure of the anodic catalysts’ surface often undergoes reconstruction to optimize the reaction path and enhance their catalytic activity. The design and maintenance of highly active sites during this reconstruction process remain critical and challenging for most OER catalysts. In this study, we explored the effects of crystal structures in pre-catalysts on surface reconstruction at low applied potential. Through experimental observation and theoretical calculation, we found out that catalysts with specific crystal structures exhibit superior surface remodeling ability, which enables them to better adapt to the conditions of the oxygen evolution reaction and achieve efficient catalysis. The discharge process enables the formation of abundant phosphorus vacancies on the surface, which in turn affects the efficiency of the entire oxygen evolution reaction. The optimized crystal structure of the catalyst results in an increase as high as 58.5 mA/cm2 for Ni5P4, which is twice as high as that observed for Ni2P. These results provide essential theoretical foundations and technical guidance for designing more efficient catalysts for oxygen evolution reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.