Abstract

Achieving a high carrier migration efficiency by constructing built-in electric field is one of the promising approaches for promoting photocatalytic activity. Herein, we have designed a donor-acceptor (D-A) crystalline carbon nitride (APMCN) with 4-amino-2,6-dihydroxypyrimidine (AP) as electron donor, in which the pyrimidine ring was well embedded in the heptazine ring via hydrogen-bonding effect during hydrothermal process. The APMCN shows superior charge-transfer due to giant built-in electric field (5.94 times higher than pristine carbon nitride), thereby exhibiting excellent photocatalytic H2 evolution rate (1350 µmol/h) with a high AQY (62.8%) at 400 nm. Mechanistic analysis based on detailed experimental investigation together with theoretical analysis reveals that the excellent photocatalytic activity is attributed to the promoted charge separation by the giant internal electric field originated from the D–A structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call