Abstract

Highly ordered superstructures of nanomaterials can be synthesized using protein cages as templates for the assembly of inorganic nanoparticles. Here, we describe in detail the creation of these biohybrid materials. The approach involves computational redesign of ferritin cages, followed by recombinant protein production and purification of the new variants. Metal oxide nanoparticles are synthesized inside the surface-charged variants. The composites are assembled using protein crystallization to yield highly ordered superlattices, which are characterized, for example, with small angle X-ray scattering. This protocol provides a detailed and comprehensive account on our newly established strategy for the synthesis of crystalline biohybrid materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call