Abstract
Self-assembly presents a remarkable approach for creating intricate structures by positioning nanomaterials in precise locations, with control over molecular interactions. For example, material arrays with interplanar distances similar to the wavelength of light can generate structural color through complex interactions like scattering, diffraction, and interference. Moreover, enzymes, plasmonic nanoparticles, and luminescent materials organized in periodic lattices are envisioned to create functional materials with various applications. Focusing on structural DNA nanotechnology, here, we summarized the recent developments of two- and three-dimensional lattices made purely from DNA nanostructures. We review DNA-based monomer design for different lattices, guest molecule assembly, and inorganic material coating techniques and discuss their functional properties and potential applications in photonic crystals, nanoelectronics, and bioengineering as well as future challenges and perspectives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.