Abstract

The crystalline and magnetic structures and magnetic properties of La{sub 1-x}Bi{sub x}MnO{sub 3+{delta}} (0.4 {<=} x {<=} 0.6, 0 {<=} {delta} {<=} 0.06) manganites have been studied. The solid solutions having the stoichiometric oxygen content are shown to be orbitally ordered A-type antiferromagnets. An increase in the oxygen content above the stoichiometric value is found to cause Mn{sup 4+} ions in the perovskite lattice, to remove the cooperative Jahn-Teller distortions, and to form a long-range ferromagnetic order. This order becomes broken as the concentration of the tetravalent manganese ions increases further. The tendency toward breaking the ferromagnetic order increases with the bismuth content. The magnetic properties are interpreted in terms of superexchange interactions on the assumption of local lattice distortions induced by anisotropy of the 6s{sup 2}(Bi{sup 3+})-2p{sup 6}(O{sup 2-}) chemical bonds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.