Abstract
In the actinides series (which corresponds to the progressive filling of the 5f sub-shell), plutonium lies at the changeover for the behavior of the 5f electrons between the light actinides (up to Np) with delocalized 5f states, and the heavy actinides (from Am on) with localized 5f states. At this boundary, the expanded δ-phase exhibits an intermediate and thus controversial behavior of its 5f electrons. This high temperature δ-phase can be stabilized at and below room temperature by alloying with so-called deltagen solutes Ga, Al, Ce and Am. In this work, some Pu–Ce and Pu–Ce–Ga alloys were studied using several techniques (dilatometry, X-ray diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS), electrical resistivity and magnetic susceptibility). It is found that the mechanism of δ-Pu stabilization is far from straightforward as both Pu 5f and Ce 4f electronic states are involved, inducing complex crystalline organization while no clear localization of the 5f states can be deduced from experimental results. Ternary Pu–Ce–Ga alloys show cooperative deltagen effects of Ce and Ga.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.