Abstract
A new class of superlattice, crystalline amorphous superlattice (CASL), by alternatively depositing two semiconductor materials, is proposed. CASL displays three states depending on the component materials' phase: both polycrystalline phases, both amorphous phases, and one polycrystalline phase while another amorphous phase. Using materials capable of reversible phase transition, CASL can demonstrate reversibility among three states. GeTe/Sb(2)Te(3) CASL has been synthesized and proved by x-ray reflectometry and TEM results. The reversible transition among three states induced by electrical and laser pulse was observed. The changes in the optical absorption edge, electrical resistivity, thermal conductivity, and crystallization temperature as a function of layer thickness are interpreted as quantum or nanoeffects. The unique properties of CASL enable the design of materials with specific properties.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.