Abstract

We report a study on charge-neutral crystal-field (dd) excitations in NiO as a function of applied pressure up to 55 GPa, using resonant inelastic x-ray scattering spectroscopy at the Ni K edge. We find distinct signatures of the pressure-induced modifications to the 3d orbital energies as a function of pressure. These modifications are experimentally evidenced by a subtle splitting of the dd-excitation resonance energies. We compare the experimental results to a charge-transfer cluster-model calculation, and a LSDA + U calculation of the ground state as a function of lattice constant. We thus show how resonant inelastic x-ray scattering spectroscopy is able to give insights into the manifold of excited states even in conditions that are difficult to access with many traditional experimental techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.