Abstract

ABSTRACTThermodynamic properties, structures, defects and their configurations of a two-dimensional Lennard-Jones (LJ) system are investigated close to crystal to glass transition (CGT) via molecular dynamics simulations. The CGT is achieved by saturating the LJ binary arrays below glass transition temperature with one type of the atoms which has different atomic size from that of the host atoms. It was found that for a given atomic size difference larger than a critical value, the CGT proceeds with increasing solute concentrations in three stages, each of which is characterized by distinct behaviors of translational and bond-orientational order correlation functions. An intermediate phase which has a quasi-long range orientational order but short range translational order has been found to exist prior to the formation of the amorphous phase. The destabilization of crystallinity is observed to be directly related to defects. We examine these results in the context of two dimensional (2D) melting theory. Finite size effects on these results, in particular on the intermediate phase formation, are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call