Abstract
The Hall effect has played a vital role in unraveling the intricate properties of electron transport in solid materials. Here, we report on a crystal symmetry-dependent in-plane Hall effect (CIHE) observed in a CuPt/CoPt ferromagnetic heterostructure. Unlike the planar Hall effect (PHE), the CIHE in CuPt/CoPt strongly depends on the current flowing direction (ϕI) with respect to the crystal structure. It reaches its maximum when the current is applied along the low crystal-symmetry axes and vanishes when applied along the high crystal-symmetry axes, exhibiting an unconventional angular dependence of cos(3ϕI). Utilizing a symmetry analysis based on the Invariant Theory, we demonstrate that the CIHE can exist in magnetic crystals possessing C3v symmetry. Using a tight-binding model and realistic first-principles calculations on the metallic heterostructure, we find that the CIHE originates from the trigonal warping of the Fermi surface. Our observations highlight the critical role of crystal symmetry in generating new types of Hall effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.