Abstract

Purposeful control of the highly active crystal planes is an effective strategy to improve the nanocrystalline catalytic activity. Therefore, Co2 P nanocrystals with high exposure of (211) lattice plane loaded at 2D hexagonal V2 O3 nanosheets (H-Co2 P-V2 O3 ) are designed via the control of morphology. After optimization, this H-Co2 P-V2 O3 boosts the redox kinetics of lithium polysulfides (LiPSs) in lithium-sulfur batteries (LSBs), which is due to the increase of the Co-active sites by exposing more (211) lattice planes of Co2 P, and the high adsorption and catalysis characteristic of H-Co2 P-V2 O3 for the conversion of LiPSs into LSBs. In the case of modification separator by H-Co2 P-V2 O3 composite, the battery achieves an outstanding reversibility of 876.9 mAh g-1 over 500 cycles at 1 C, a superior rate property of 611.5 mAh g-1 at 8 C, and a long-term cycling performance with a low attenuation of 0.04% per cycle over 1000 cycles at 4 C for LSBs. Impressively, a remarkable areal capacity of 12.38 mAh cm-2 is retained under the high sulfur loading of 14.5mg cm-2 after 100 cycles. It is believed that the crystal surface engineering provides guidance to further improve the electrochemical performance of the LSB field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call