Abstract

N,N-R-Phenyl-7-amino-2,4-trifluoromethylquinoline derivatives (R = Me (1), Et (2), isopropyl (3), and Ph (4)) were prepared as a new type of fluorophore responsive to external stimuli. 1, 2, 3, and 4 were obtained as single crystals including three crystal polymorphs (1α, 1β, and 1γ) of 1 and two (2α and 2β) of 2. In 4, a phase transition from 4173 and 490 between 173 and 90 K was observed. The solid-state emission showed a red shift by 30–58 nm compared with the emission in n-hexane, and their emission properties depended on the molecular arrangements. The modes of molecular arrangements for 1α, 1β, and 1γ were a slipped parallel (SP), head-to-tail γ-type herringbone (HT-γ-HB), and head-to-head γ-type herringbone (HH-γ-HB); those for 2α and 2β were HT-γ-HB and head-to-tail dimer (HT-dimer), and that for 3 was head-to-tail columnar (HTC). 4173 and 490 were similar HT-γ-HB. The crystal-to-crystal transformations from 1γ to 1β and from 2β to 2α were observed by heating and grinding the crystal, respectively, with emittance changes. After melting, on cooling, all crystals formed supercooled liquid (SCL) and then glass states. In the SCL state, molecules were amorphous and were quickly crystallized by a mechanical stimulus such as scratching. By taking advantage of the difference of emitting intensity between the SCL and the crystal states for 1, “writing” and “erasing” of a letter with scratching and heating, respectively, were demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.