Abstract
Abstract Crystal structures of two vancomycin complexes with phosphate and N-acetyl–d-Ala (AcDA) were determined. Each complex involves two crystallographically independent vancomycin molecules (V1 and V2) in the asymmetric unit, which form a usually observed back-to-back arranged vancomycin dimer V1–V2 with two disaccharide chains packed in a head-to-head manner, but only one of the two ligand-binding sites is occupied. Comparison of the published crystal structures of low-affinity (small in molecular size) ligand complexes of vancomycin with high-affinity (large) ligand complexes reveals that when the high-affinity ligand binds, three structural factors (hydrogen-bonding interactions between the two peptide-backbones and hydrophobic intra-dimer sugar–ring and ring (face)–ring (edge) interactions) work to enhance the stabilization of the back-to-back dimer-interface, an important factor that is believed to promote antibacterial activity. It has also been revealed, by examining the high-affinity ligand complexes (including N-acetyl–d-Ala–d-Ala), that sugar–ligand interaction could cause different affinities of the two halves of the dimer; this is a factor responsible for the failure of the ligand binding to V1 in the AcDA complex. Possible scenarios for the formation of vancomycin complexes with low-affinity as well as high-affinity ligands are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.