Abstract

Carbon-carbon bond formation is an essential reaction in organic chemistry and the use of aldolase enzymes for the stereochemical control of such reactions is an attractive alternative to conventional chemical methods. Here we describe the crystal structures of a novel class II enzyme, 2-dehydro-3-deoxy-galactarate (DDG) aldolase from Escherichia coli, in the presence and absence of substrate. The crystal structure was determined by locating only four Se sites to obtain phases for 506 protein residues. The protomer displays a modified (alpha/beta)(8) barrel fold, in which the eighth alpha-helix points away from the beta-barrel instead of packing against it. Analysis of the DDG aldolase crystal structures suggests a novel aldolase mechanism in which a phosphate anion accepts the proton from the methyl group of pyruvate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.