Abstract

Time-of-flight neutron powder diffraction data have been collected from Na2MoO4 and Na2WO4 to a resolution of sin (θ)/λ = 1.25 Å(-1), which is substanti-ally better than the previous analyses using Mo Kα X-rays, providing roughly triple the number of measured reflections with respect to the previous studies [Okada et al. (1974 ▶). Acta Cryst. B30, 1872-1873; Bramnik & Ehrenberg (2004 ▶). Z. Anorg. Allg. Chem. 630, 1336-1341]. The unit-cell parameters are in excellent agreement with literature data [Swanson et al. (1962 ▶). NBS Monograph No. 25, sect. 1, pp. 46-47] and the structural parameters for the molybdate agree very well with those of Bramnik & Ehrenberg (2004 ▶). However, the tungstate structure refinement of Okada et al. (1974 ▶) stands apart as being conspicuously inaccurate, giving significantly longer W-O distances, 1.819 (8) Å, and shorter Na-O distances, 2.378 (8) Å, than are reported here or in other simple tungstates. As such, this work represents an order-of-magnitude improvement in precision for sodium molybdate and an equally substantial improvement in both accuracy and precision for sodium tungstate. Both compounds adopt the spinel structure type. The Na(+) ions have site symmetry .-3m and are in octa-hedral coordination while the transition metal atoms have site symmetry -43m and are in tetra-hedral coordination.

Highlights

  • Background functionGSAS Background function #1 (10 terms)

  • Reported by Okada et al (1974) from X-ray single-crystal diffraction data to sin ()/ = 0.81 Å 1. Both compounds are highly soluble in water, crystallizing at room temperature as orthorhombic dihydrates

  • (a) Arrangement of molybdate ions in the unit cell of Na2MoO4; anisotropic displacement ellipsoids are drawn at the 75% probability level. (b) Connectivity of the NaO6 octahedra, with shorter shared edges and longer unshared edges, to the MoO4 tetrahedra in Na2MoO4; as in (a), the ellipsoids are drawn at the 75% probability level

Read more

Summary

Dominic Fortes

B30, 1872–1873; Bramnik & Ehrenberg (2004). 46–47] and the structural parameters for the molybdate agree very well with those of Bramnik & Ehrenberg (2004). The tungstate structure refinement of Okada et al (1974) stands apart as being conspicuously inaccurate, giving significantly longer W—O distances, 1.819 (8) Å, and shorter Na—O distances, 2.378 (8) Å, than are reported here or in other simple tungstates. This work represents an order-of-magnitude improvement in precision for sodium molybdate and an substantial improvement in both accuracy and precision for sodium tungstate. Both compounds adopt the spinel structure type. The Na+ ions have site symmetry .3m and are in octahedral coordination while the transition metal atoms have site symmetry 43m and are in tetrahedral coordination

Chemical context
Structural commentary
Synthesis and crystallization
Refinement
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call