Abstract

Glycosylation is a key modification for most molecules including plant natural products, for example, flavonoids and isoflavonoids, and can enhance the bioactivity and bioavailability of the natural products. The crystal structure of plant rhamnosyltransferase UGT89C1 from Arabidopsis thaliana was determined, and the structures of UGT89C1 in complexes with UDP-β-l-rhamnose and acceptor quercetin revealed the detailed interactions between the enzyme and its substrates. Structural and mutational analysis indicated that Asp356, His357, Pro147 and Ile148 are key residues for sugar donor recognition and specificity for UDP-β-l-rhamnose. The mutant H357Q exhibited activity with both UDP-β-l-rhamnose and UDP-glucose. Structural comparison and mutagenesis confirmed that His21 is a key residue as the catalytic base and the only catalytic residue involved in catalysis independently as UGT89C1 lacks the other catalytic Asp that is highly conserved in other reported UGTs and forms a hydrogen bond with the catalytic base His. Ser124 is located in the corresponding position of the catalytic Asp in other UGTs and is not able to form a hydrogen bond with His21. Mutagenesis further showed that Ser124 may not be important in its catalysis, suggesting that His21 and acceptor may form an acceptor-His dyad and UGT89C1 utilizes a catalytic dyad in catalysis instead of catalytic triad. The information of structure and mutagenesis provides structural insights into rhamnosyltransferase substrate specificity and rhamnosylation mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call