Abstract

Multifunctional ferromagnetic shape memory Heusler alloys are frequently characterized by structural modulation in martensitic phases. In particular, modulated martensitic phases, showing the higher magnetic field induced strain (MFIS) performance, are the most promising candidates for technological applications. Depending on the composition, as well as pressure and temperature conditions, this periodic structural distortion, consisting of shuffling of atomic layers along defined crystallographic directions, accompanies the martensitic transformation. Over the years, different Ni-Mn-Ga modulated martensitic structures have been observed and classified depending upon the periodicity of corresponding ideal nM superstructure (where n indicates the number of basic unit cells constituting the superlattices). On the other hand, it has been demonstrated that in most cases such structural modulation is incommensurate and the crystal structure has been fully determined by applying superspace formalism. The results, obtained by structure refinements on powder diffraction data, suggest a unified crystallographic description of the modulated martensitic structures, here presented, where every different “nM” periodicity can be straightforwardly represented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.