Abstract

An electrospinning method was used to prepare electrospun PVDF-based membranes (EPMs) for battery separators applications. The morphology of the EPMs was investigated by scanning electron microscopy (SEM). The relations between applied voltage and average fiber diameter (AFD) under certain electrospinning conditions were discussed. The thermal properties and crystal structure of the EPMs also were investigated by differential scanning calorimetry (DSC), and wide-angle X-ray diffraction (WAXD). Due to soften PVDF fibers in high temperature, the thermal treated EPMs can form an interconnected web structure, which greatly improves physical properties. Compared with Celgard™ 2400 (PP separator), the cell with EPM shows better cycling ability of CV and charge–discharge performance with little capacity loss after 50 cycles at C/2 rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.