Abstract

Two crystal structures of the C123S mutant of 2-methylisocitrate lyase have been determined, one with the bound reaction products, Mg(2+)-pyruvate and succinate, and the second with a bound Mg(2+)-(2R,3S)-isocitrate inhibitor. Comparison with the structure of the wild-type enzyme in the unbound state reveals that the enzyme undergoes a conformational transition that sequesters the ligand from solvent, as previously observed for two other enzyme superfamily members, isocitrate lyase and phosphoenolpyruvate mutase. The binding modes reveal the determinants of substrate specificity and stereoselectivity, and the stringent specificity is verified in solution using various potential substrates. A model of bound 2-methylisocitrate has been developed based on the experimentally determined structures. We propose a catalytic mechanism involving an alpha-carboxy-carbanion intermediate/transition state, which is consistent with previous stereochemical experiments showing inversion of configuration at the C(3) of 2-methylisocitrate. Structure-based sequence analysis and phylogenic tree construction reveal determinants of substrate specificity, highlight nodes of divergence of families, and predict enzyme families with new functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.