Abstract

Sm and Sm-like (Lsm) proteins are considered as an evolutionary conserved family involved in RNA metabolism in organisms from bacteria and archaea to human. Currently, the function of Sm-like archaeal proteins (SmAP) is not well understood. Here, we report the crystal structures of SmAP proteins from Sulfolobus acidocaldarius and Methanococcus vannielii and a comparative analysis of their RNA-binding sites. Our data show that these SmAPs have only a uridine-specific RNA-binding site, unlike their bacterial homolog Hfq, which has three different RNA-binding sites. Moreover, variations in the amino acid composition of the U-binding sites of the two SmAPs lead to a difference in protein affinity for oligo(U) RNA. Surface plasmon resonance data and nucleotide-binding analysis confirm the high affinity of SmAPs for uridine nucleotides and oligo(U) RNA and the reduced affinity for adenines, guanines, cytidines and corresponding oligo-RNAs. In addition, we demonstrate that MvaSmAP1 and SacSmAP2 are capable of melting an RNA hairpin and, apparently, promote its interaction with complementary RNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.